Immune competency of a hairless mouse strain for improved preclinical studies in genetically engineered mice.
نویسندگان
چکیده
Genetically engineered mouse models (GEMM) of cancer are of increasing value to preclinical therapeutics. Optical imaging is a cost-effective method of assessing deep-seated tumor growth in GEMMs whose tumors can be encoded to express luminescent or fluorescent reporters, although reporter signal attenuation would be improved if animals were fur-free. In this study, we sought to determine whether hereditable furlessness resulting from a hypomorphic mutation in the Hairless gene would or would not also affect immune competence. By assessing humoral and cellular immunity of the SKH1 mouse line bearing the hypomorphic Hairless mutation, we determined that blood counts, immunoglobulin levels, and CD4+ and CD8+ T cells were comparable between SKH1 and the C57Bl/6 strain. On examination of T-cell subsets, statistically significant differences in naïve T cells (1.7 versus 3.4 x 10(5) cells/spleen in SKH1 versus C57Bl/6, P = 0.008) and memory T cells (1.4 versus 0.13 x 10(6) cells/spleen in SKH1 versus C57Bl/6, P = 0.008) were detected. However, the numerical differences did not result in altered T-cell functional response to antigen rechallenge (keyhole limpet hemocyanin) in a lymph node cell in vitro proliferative assay. Furthermore, interbreeding the SKH1 mouse line to a rhabdomyosarcoma GEMM showed preserved antitumor responses of CD56+ natural killer cells and CD163+ macrophages, without any differences in tumor pathology. The fur-free GEMM was also especially amenable to multiplex optical imaging. Thus, SKH1 represents an immune competent, fur-free mouse strain that may be of use for interbreeding to other genetically engineered mouse models of cancer for improved preclinical studies.
منابع مشابه
Genetically Engineered Mouse Embryonic Stem Cell – derived Cardiomyocytes as a Suitable Model on Drugs Toxicity In vitro
Background DOX is a powerful chemotherapeutic agent used in the treatment of solid tumors and malignant hematological diseases. However, its cardiac toxicity limits the clinical usefulness of this drug. Previous reports have shown Corticosteroids induce a cytoprotective effect on cardiomyocytes. Mouse transgenic embryonic stem cell-derived pure cardiomyocytes may be considered as a model for a...
متن کامل“Glowing Head” Mice: A Genetic Tool Enabling Reliable Preclinical Image-Based Evaluation of Cancers in Immunocompetent Allografts
Preclinical therapeutic assessment currently relies on the growth response of established human cell lines xenografted into immunocompromised mice, a strategy that is generally not predictive of clinical outcomes. Immunocompetent genetically engineered mouse (GEM)-derived tumor allograft models offer highly tractable preclinical alternatives and facilitate analysis of clinically promising immun...
متن کاملO-2: A Novel Antioxidant Formulation to Treat Male Infertility Emanating from Sperm Oxidative DNA Damage: Promising Preclinical Evidence from Mouse Models
Background: Sperm DNA damage (SDD) is a significant male infertility factor, yet it is not routinely diagnosed or treated in couples undertaking fertility treatment by ART. Men with this condition are likely to experience sub-fertility or infertility, expose their female partners to greater risk of miscarriage and pass on de novo sporadic DNA mutations potentially compromising the health of the...
متن کاملGenetically Engineered Mouse Models for Drug Development and Preclinical Trials
Drug development and preclinical trials are challenging processes and more than 80% to 90% of drug candidates fail to gain approval from the United States Food and Drug Administration. Predictive and efficient tools are required to discover high quality targets and increase the probability of success in the process of new drug development. One such solution to the challenges faced in the develo...
متن کاملSuperovulation Using the Combined Administration of Inhibin Antiserum and Equine Chorionic Gonadotropin Increases the Number of Ovulated Oocytes in C57BL/6 Female Mice
Superovulation is a reproductive technique generally used to produce genetically engineered mice. Superovulation in mice involves the administration of equine chorionic gonadotropin (eCG) to promote follicle growth and then that of human chorionic gonadotropin (hCG) to induce ovulation. Previously, some published studies reported that inhibin antiserum (IAS) increased the number of ovulated ooc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 9 8 شماره
صفحات -
تاریخ انتشار 2010